论文标题

超级线性椭圆方程的解决方案及其摩尔斯

Solutions of super-linear elliptic equations and their Morse indices

论文作者

Mtiri, Foued

论文摘要

我们在这里调查了退化的双谐波方程:$$δ_{m}^2 u = f(x,u)\; \ \; \ mbox {in}Ø,\ quad u =ΔU= 0 \ quad \ mbox {on} \; \pΩ,$$,带有$ m \ ge 2,$,以及退化的tri -harmonic方程:​​$$-Δ__{m}^3 u = f(x,x,u)\; \; \; \ mbox {in}Ø,\ quad u = \ frac {\ p u} {\pν} = \ frac {\ p^{2} u} {\pν^{2}} = 0 \ quad \ quad \ quad \ mbox {on} \; \pΩ,$$ where $Ω\subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary $N>4$ or $N>6$ resp, and $f \in \mathrm{C}^{1}(Ω\times \mathbb{R})$ satisfying suitable m-superlinear and subcritical growth conditions.我们的主要目的是建立$ l^{p} $和$ l^{\ infty} $通过Morse索引为弱解决方案的显式界限。我们的结果扩展了以前在\ cite {c,hhf,hyf,lec}中获得的显式估计。

We investigate here the degenerate bi-harmonic equation: $$Δ_{m}^2 u=f(x,u)\; \;\;\mbox{in} Ø,\quad u = Δu = 0\quad \mbox{on }\; \pΩ,$$ with $m\ge 2,$ and also the degenerate tri-harmonic equation: $$ -Δ_{m}^3 u=f(x,u)\;\;\; \mbox{in} Ø,\quad u = \frac{\p u}{\p ν} = \frac{\p^{2} u}{\pν^{2}} = 0\quad \mbox{on }\; \pΩ,$$ where $Ω\subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary $N>4$ or $N>6$ resp, and $f \in \mathrm{C}^{1}(Ω\times \mathbb{R})$ satisfying suitable m-superlinear and subcritical growth conditions. Our main purpose is to establish $L^{p}$ and $L^{\infty}$ explicit bounds for weak solutions via the Morse index. Our results extend previous explicit estimate obtained in \cite{c, HHF, hyf, lec}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源