论文标题
使用扩张器分解的在线拼车
Online Carpooling using Expander Decompositions
论文作者
论文摘要
我们考虑在线拼车问题:给定$ n $顶点,随着时间的推移,一系列边缘到达。当边缘$ e_t =(u_t,v_t)$到达时间步骤$ t $时,算法必须将边缘定向为$ v_t \ rightArrow u_t $或$ u_t \ u_t \ rightArrow v_t $,目的是将任何顶点的最大差异(即绝对差异)(即绝对差异),即添加exegree,nefegree。边缘对应于想要一起骑行的人对,并表示指定驾驶员的指向。然后,差异目标对应于每个人驾驶的人接近他们参与的相当一部分。 在本文中,我们设计有效的算法,这些算法可以维护$ t $到达的任何序列,而到达$ g $时,可以维护$ t $到达的任何序列上的polygog $(n,t)$最大差异(W.H.P)。这为在线(随机)拼车问题提供了第一个小聚集体界限。在此工作之前,最著名的界限为$ o(\ sqrt {n \ log n})$ - 对于任何到达的对手序列的差异,或$ o(\ log \!\ log n)$ - 当$ g $是完整的图形时,随机到达的差异。 我们论文的技术症结在于表明,简单的贪婪算法,当到达边缘从完整的图中随机均匀地绘制时,它的差异范围是良好的差异,当$ g $是expander gub时,也具有多种差异。然后,我们将其与已知的扩展器分解结果相结合,以设计我们的整体算法。
We consider the online carpooling problem: given $n$ vertices, a sequence of edges arrive over time. When an edge $e_t = (u_t, v_t)$ arrives at time step $t$, the algorithm must orient the edge either as $v_t \rightarrow u_t$ or $u_t \rightarrow v_t$, with the objective of minimizing the maximum discrepancy of any vertex, i.e., the absolute difference between its in-degree and out-degree. Edges correspond to pairs of persons wanting to ride together, and orienting denotes designating the driver. The discrepancy objective then corresponds to every person driving close to their fair share of rides they participate in. In this paper, we design efficient algorithms which can maintain polylog$(n,T)$ maximum discrepancy (w.h.p) over any sequence of $T$ arrivals, when the arriving edges are sampled independently and uniformly from any given graph $G$. This provides the first polylogarithmic bounds for the online (stochastic) carpooling problem. Prior to this work, the best known bounds were $O(\sqrt{n \log n})$-discrepancy for any adversarial sequence of arrivals, or $O(\log\!\log n)$-discrepancy bounds for the stochastic arrivals when $G$ is the complete graph. The technical crux of our paper is in showing that the simple greedy algorithm, which has provably good discrepancy bounds when the arriving edges are drawn uniformly at random from the complete graph, also has polylog discrepancy when $G$ is an expander graph. We then combine this with known expander-decomposition results to design our overall algorithm.