论文标题

非线性平等限制随机优化的顺序二次优化

Sequential Quadratic Optimization for Nonlinear Equality Constrained Stochastic Optimization

论文作者

Berahas, Albert, Curtis, Frank E., Robinson, Daniel P., Zhou, Baoyu

论文摘要

提出了顺序二次优化算法,用于通过平等约束解决平滑的非线性优化问题。主要重点是针对约束函数确定性的情况提出的算法,并且可以明确计算约束函数和衍生值,但是目标函数是随机的。假定在这种情况下,尽管可以计算随机函数和梯度估计值,但要明确地计算目标函数和衍生值。作为这种随机设置的起点,为确定性设置提出了一种算法,该确定性设置以最先进的线路搜索SQP算法进行建模,但使用基于Lipschitz常数(或自适应估计的Lipschitz常数)的步进选择方案,以代替线路搜索。这为随机设置所提出的算法设定了阶段,假定线路搜索是棘手的。在合理的假设下,偏远起点的收敛性(分别,〜在预期中的收敛)被证明是针对拟议的确定性(分别,〜随机)算法的。数值实验的结果证明了我们提出的技术的实际性能。

Sequential quadratic optimization algorithms are proposed for solving smooth nonlinear optimization problems with equality constraints. The main focus is an algorithm proposed for the case when the constraint functions are deterministic, and constraint function and derivative values can be computed explicitly, but the objective function is stochastic. It is assumed in this setting that it is intractable to compute objective function and derivative values explicitly, although one can compute stochastic function and gradient estimates. As a starting point for this stochastic setting, an algorithm is proposed for the deterministic setting that is modeled after a state-of-the-art line-search SQP algorithm, but uses a stepsize selection scheme based on Lipschitz constants (or adaptively estimated Lipschitz constants) in place of the line search. This sets the stage for the proposed algorithm for the stochastic setting, for which it is assumed that line searches would be intractable. Under reasonable assumptions, convergence (resp.,~convergence in expectation) from remote starting points is proved for the proposed deterministic (resp.,~stochastic) algorithm. The results of numerical experiments demonstrate the practical performance of our proposed techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源