论文标题

一种基于模型的聊天机器人生成方法,可以与开放数据源进行交谈

A Model-based Chatbot Generation Approach to Converse with Open Data Sources

论文作者

Ed-douibi, Hamza, Izquierdo, Javier Luis Cánovas, Daniel, Gwendal, Cabot, Jordi

论文摘要

开放数据运动促进了数据的自由分布。在开放数据理念之后,越来越多的公司和政府组织正在网上在线提供数据,从而导致了越来越多的技术和服务市场,以帮助发布和消费数据。发布此类数据的紧急方法之一是通过Web API,它提供了一种强大的手段,可以重复使用此数据并将其与其他服务集成在一起。 Socrata,Ckan或Odata是通过Web API发布数据的流行规格的示例。 然而,查询和集成这些网络API是耗时的,需要限制普通公民开放数据运动的技术技能。在其他情况下,聊天机器人应用程序越来越多地用作公司和最终用户之间的直接通信渠道。我们认为,对于开放数据,这是一种弥合公民与开放数据源之间差距的方式。本文介绍了一种方法,可以自动从基于API的开放数据源得出全面的聊天机器人。我们的过程依赖于基于模型的中间表示(通过UML类图和配置文件)来促进要生成的聊天机器人的自定义。

The Open Data movement promotes the free distribution of data. More and more companies and governmental organizations are making their data available online following the Open Data philosophy, resulting in a growing market of technologies and services to help publish and consume data. One of the emergent ways to publish such data is via Web APIs, which offer a powerful means to reuse this data and integrate it with other services. Socrata, CKAN or OData are examples of popular specifications for publishing data via Web APIs. Nevertheless, querying and integrating these Web APIs is time-consuming and requires technical skills that limit the benefits of Open Data movement for the regular citizen. In other contexts, chatbot applications are being increasingly adopted as a direct communication channel between companies and end-users. We believe the same could be true for Open Data as a way to bridge the gap between citizens and Open Data sources. This paper describes an approach to automatically derive full-fledged chatbots from API-based Open Data sources. Our process relies on a model-based intermediate representation (via UML class diagrams and profiles) to facilitate the customization of the chatbot to be generated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源