论文标题

深层的地方波动

Deep Local Volatility

论文作者

Chataigner, Marc, Crépey, Stéphane, Dixon, Matthew

论文摘要

选择定价的深度学习已成为一种新的方法,用于在希腊人的校准和计算中应用快速计算。但是,其中许多方法都没有强制执行任何无容易的条件,并且从未考虑过随后的局部波动表面。在本文中,我们开发了一种深度学习方法来插值欧洲香草期权价格,该价格共同产生了当地波动的全部表面。我们证明了损耗函数或Feed向前网络体系结构的修改,以实施(硬性约束方法)或偏爱(软约束方法)无肢体条件,我们指定了适当性能所需的实验设计参数。一个新颖的组成部分是使用dupire公式在网络拟合期间对与期权价格相关的本地波动率实施界限。我们的方法在DAX香草选项的实际数据集上进行了数值基准测试。

Deep learning for option pricing has emerged as a novel methodology for fast computations with applications in calibration and computation of Greeks. However, many of these approaches do not enforce any no-arbitrage conditions, and the subsequent local volatility surface is never considered. In this article, we develop a deep learning approach for interpolation of European vanilla option prices which jointly yields the full surface of local volatilities. We demonstrate the modification of the loss function or the feed forward network architecture to enforce (hard constraints approach) or favor (soft constraints approach) the no-arbitrage conditions and we specify the experimental design parameters that are needed for adequate performance. A novel component is the use of the Dupire formula to enforce bounds on the local volatility associated with option prices, during the network fitting. Our methodology is benchmarked numerically on real datasets of DAX vanilla options.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源