论文标题
识别Desi中的类星体的最佳策略
Optimal strategies for identifying quasars in DESI
论文作者
论文摘要
随着光谱调查的规模不断增长,针对类星体(QSO)的光谱分类的问题将超越其对人类专家的历史依赖。取而代之的是,自动分类器将越来越成为主要的分类方法,在模棱两可的情况下仅留下一小部分光谱。为了最大程度地提高分类准确性,最佳使用可用分类器将非常重要,尤其是在寻求识别和消除独特的故障模式时。在这项工作中,我们证明了基于机器学习的分类器准网络将用于未来的调查,例如暗能量光谱仪器(DESI),将其性能与Desi Pipeline分类器redrock进行了比较。在其足迹上的四个通行证中的第一个中,Desi需要选择高$ z $($ z \ geq2.1 $)QSO进行重新观察,因此我们首先评估了分类器从单曝光光谱中识别出高$ z $ qSO的性能。然后,我们使用共同的光谱来模拟分类器在低和高$ z $ bin中构建QSO目录的能力,以模拟调查终止数据。对于此类任务,Quasarnet能够以其当前形式胜过重新布置,从单个暴露中识别出约99%的高$ z $ QSO,并生产具有较低污染水平的QSO目录。通过结合质子网和Redrock的输出,我们可以进一步改善分类策略,从单个暴露中识别高达99.5%的高$ z $ QSO,并将最终QSO目录污染降低到0.5%以下。这些合并的策略有效地满足了DESI的QSO分类需求。
As spectroscopic surveys continue to grow in size, the problem of classifying spectra targeted as quasars (QSOs) will need to move beyond its historical reliance on human experts. Instead, automatic classifiers will increasingly become the dominant classification method, leaving only small fractions of spectra to be visually inspected in ambiguous cases. In order to maximise classification accuracy, making best use of available classifiers will be of great importance, particularly when looking to identify and eliminate distinctive failure modes. In this work, we demonstrate that the machine learning-based classifier QuasarNET will be of use for future surveys such as the Dark Energy Spectroscopic Instrument (DESI), comparing its performance to the DESI pipeline classifier redrock. During the first of four passes across its footprint DESI will need to select high-$z$ ($z\geq2.1$) QSOs for reobservation, and so we first assess the classifiers' performance at identifying high-$z$ QSOs from single-exposure spectra. We then quantify the classifiers' abilities to construct QSO catalogues in both low- and high-$z$ bins, using coadded spectra to simulate end-of-survey data. For such tasks, QuasarNET is able to outperform redrock in its current form, identifying approximately 99% of high-$z$ QSOs from single exposures and producing QSO catalogues with sub-percent levels of contamination. By combining QuasarNET and redrock's outputs, we can further improve the classification strategies to identify up to 99.5% of high-$z$ QSOs from single exposures and reduce final QSO catalogue contamination to below 0.5%. These combined strategies address DESI's QSO classification needs effectively.