论文标题

根据街机2和边缘观测,对原始磁场的限制

Constraint on Primordial Magnetic Fields In the Light of ARCADE 2 and EDGES Observations

论文作者

Natwariya, Pravin Kumar

论文摘要

我们根据实验来研究原始磁场(PMF)的约束,以检测宇宙学,天体物理学和弥漫性发射的全局电离签名时代(边缘)低波段观察和绝对辐射仪(ARCADE 2)。拱廊2观测值检测到3-90 GHz的频率范围内半乳酸过量的无线电辐射。无线电辐射的增强也由长波长阵列(LWA1)的第一个站点支持40-80 MHz的频率范围。不能完全排除宇宙微波背景上早期辐射过量的存在,这可能解释了边缘异常。在存在衰减PMF的情况下,由于磁场腐烂加热气体,可以改变21厘米的差异亮度温度,我们可以限制磁场。对于LWA1限制的过剩辐射分数($ a_r $),我们表明,当今磁场强度的上限为$ b_0 $,其比例为1 MPC,为$ \ lyssim 3.7 $ ng,用于光谱指数$ n_b = -2.99 $。而对于$ n_b = -1 $,我们得到$ b_0 \ lyssim1.1 \ times10^{ - 3} $ ng。我们还讨论了第一颗恒星对IgM气体演化的影响以及$ b_0 $的允许值。对于$ a_r $为lwa1限制,我们将磁场上的上限为$ b_0(n_b = -2.99)\ sillssim4.9 \ times10^{ - 1} $ ng和$ b_0(n_b = -1)通过将多余的辐射分数降低到LWA1限制以下,我们对$ b_0 $的限制更为严格。

We study the constraints on primordial magnetic fields (PMFs) in the light of the Experiment to Detect the Global Epoch of Reionization Signature (EDGES) low-band observation and Absolute Radiometer for Cosmology, Astrophysics and Diffuse Emission (ARCADE 2). ARCADE 2 observation detected extra-galactic excess radio radiation in the frequency range 3-90 GHz. The enhancement in the radio radiation is also supported by the first station of the Long Wavelength Array (LWA1) in the frequency range 40-80 MHz. The presence of early radiation excess over the cosmic microwave background can not be completely ruled out, and it may explain the EDGES anomaly. In the presence of decaying PMFs, 21 cm differential brightness temperature can modify due to the heating of the gas by decaying magnetic fields, and we can constraint the magnetic fields. For excess radiation fraction ($A_r$) to be LWA1 limit, we show that the upper bound on the present-day magnetic field strength, $B_0$, on the scale of 1 Mpc is $\lesssim 3.7$ nG for spectral index $n_B=-2.99$. While for $n_B=-1$, we get $B_0\lesssim1.1\times10^{-3}$ nG. We also discuss the effects of first stars on IGM gas evolution and the allowed value of $B_0$. For $A_r$ to be LWA1 limit, we get the upper constraint on magnetic field to be $B_0(n_B=-2.99)\lesssim4.9\times10^{-1}$ nG and $B_0(n_B=-1)\lesssim3.7\times10^{-5}$ nG. By decreasing excess radiation fraction below the LWA1 limit, we get a more stringent bound on $B_0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源