论文标题

量子不朽和非古典逻辑

Quantum Immortality and Non-Classical Logic

论文作者

Wilson, Phillip L.

论文摘要

Everett盒子是一种设备,其中观察者和致命的量子设备与宇宙的其余部分分离出来。定期进行连续的试验,在每种试验中,每种试验在设备内部自动测量量子叠加会导致即时死亡或对观察者无能为力。从观察者的角度来看,随着$ m $的增加,单调的$ M $试验的机会会减少。结果,如果观察者仍然活着足够大的$ m $,她必须拒绝对量子力学的任何解释,而量子力学的解释不是多个世界的解释(MWI),因为生存的$ M $ $试验在单个世界中的不可能消失,而观察者的版本必须在Branching Mwi Mwi Universe中生存。在这里,我们询问这个结论是否仍然存在是否对基于经典逻辑的限制而不是经典的理解,而是要求物理学来通过在以各种建设性逻辑,递归的构建性数学为单位的计算宇宙模型中调查Everett Box来满足可计算性需求。我们表明,尽管拒绝非MWI解释的标准Everett论点不再有效,但我们可以证明Everett的结论仍然存在于可计算的宇宙中。因此,我们认为埃弗里特的论点得到了加强,并且必须加强任何反题词,因为它不仅具有经典逻辑(具有连续性和无穷大的嵌入式概念),而且还具有可计算的逻辑。

The Everett Box is a device in which an observer and a lethal quantum apparatus are isolated from the rest of the universe. On a regular basis, successive trials occur, in each of which an automatic measurement of a quantum superposition inside the apparatus either causes instant death or does nothing to the observer. From the observer's perspective, the chances of surviving $m$ trials monotonically decreases with increasing $m$. As a result, if the observer is still alive for sufficiently large $m$ she must reject any interpretation of quantum mechanics which is not the many-worlds interpretation (MWI), since surviving $m$ trials becomes vanishingly unlikely in a single world, whereas a version of the observer will necessarily survive in the branching MWI universe. Here we ask whether this conclusion still holds if rather than a classical understanding of limits built on classical logic we instead require our physics to satisfy a computability requirement by investigating the Everett Box in a model of a computational universe running on a variety of constructive logic, Recursive Constructive Mathematics. We show that although the standard Everett argument rejecting non-MWI interpretations is no longer valid, we can show that Everett's conclusion still holds within a computable universe. Thus we argue that Everett's argument is strengthened and any counter-argument must be strengthened, since it holds not only in classical logic (with embedded notions of continuity and infinity) but also in a computable logic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源