论文标题

颜色图像的全四元化表示:基于QSVD的案例研究

Full Quaternion Representation of Color images: A Case Study on QSVD-based Color Image Compression

论文作者

Parchami, Alireza, Mahdavi, Mojtaba

论文摘要

多年来,彩色图像的通道已被单独处理,或者图像已转换为灰色图像处理。颜色图像的纯四元化表示可以解决此问题,因为它允许在整体空间中处理图像。然而,由于额外的第四维,它带来了额外的成本。在本文中,我们提出了一种表示具有完整四元数编号的颜色图像的方法,使我们能够整体处理颜色图像,而无需额外的时间,空间和计算成本。考虑到颜色通道的自动和互相关,自动编码器神经网络用于生成一个全局模型,以将颜色图像转换为完整的Quaternion矩阵。为了评估模型,我们使用UCID数据集,结果表明该模型在颜色图像上具有可接受的性能。此外,我们提出了一种基于生成的模型和QSVD作为案例研究的压缩方法。该方法与使用纯季度表示的相同压缩方法进行比较,并使用UCID数据集进行评估。结果表明,使用建议的完整四元表示的压缩方法在压缩文件的时间,质量和大小方面,票价优于其他票价。

For many years, channels of a color image have been processed individually, or the image has been converted to grayscale one with respect to color image processing. Pure quaternion representation of color images solves this issue as it allows images to be processed in a holistic space. Nevertheless, it brings additional costs due to the extra fourth dimension. In this paper, we propose an approach for representing color images with full quaternion numbers that enables us to process color images holistically without additional cost in time, space and computation. With taking auto- and cross-correlation of color channels into account, an autoencoder neural network is used to generate a global model for transforming a color image into a full quaternion matrix. To evaluate the model, we use UCID dataset, and the results indicate that the model has an acceptable performance on color images. Moreover, we propose a compression method based on the generated model and QSVD as a case study. The method is compared with the same compression method using pure quaternion representation and is assessed with UCID dataset. The results demonstrate that the compression method using the proposed full quaternion representation fares better than the other in terms of time, quality, and size of compressed files.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源