论文标题

shimura曲线曲线的位置上的双层覆盖率分支

Shimura curves in the Prym loci of ramified double covers

论文作者

Frediani, Paola, Grosselli, Gian Paolo

论文摘要

我们研究pel类型的Shimura曲线在极化的Abelian品种$ a^δ_p$的空间中,通常包含在受损的Prym基因座中。我们概括为双重覆盖范围,在未受到的情况下,在[10]中进行的构造以及两个分支点。即,我们构建了双层盖的家族,这些家族与基本曲线上的固定组动作兼容。我们仅考虑一维家族的情况,而小组的基本曲线的商为$ {\ mathbb p}^1 $。使用计算机代数,我们获得了(分支)prym loci中包含的184个Shimura曲线。

We study Shimura curves of PEL type in the space of polarised abelian varieties $A^δ_p$ generically contained in the ramified Prym locus. We generalise to ramified double covers, the construction done in [10] in the unramified case and in the case of two ramification points. Namely, we construct families of double covers which are compatible with a fixed group action on the base curve. We only consider the case of one-dimensional families and where the quotient of the base curve by the group is ${\mathbb P}^1$. Using computer algebra we obtain 184 Shimura curves contained in the (ramified) Prym loci.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源