论文标题
电阻AC耦合硅探测器:梁测试和激光数据的组合分析的运行原理和首先结果
Resistive AC-Coupled Silicon Detectors: principles of operation and first results from a combined analysis of beam test and laser data
论文作者
论文摘要
本文介绍了使用激光和梁测试数据的组合分析使用电阻AC耦合硅探测器(RSD)的运行原理以及时间和空间分辨率的测量。 RSD是一种基于低增益雪崩二极管(LGAD)技术的新型N-in-P硅传感器,在该技术中,$ N^+$植入物的设计具有电阻性,并且通过AC耦合获得了读出。 RSD的真正创新特征是,撞击粒子产生的信号在多个读出垫中共享,而无需浮动电极或外部磁场。仔细调整氧化物厚度和$ n^+$掺杂配置文件是该设备成功运行的基础。几种具有不同垫宽度几何形状的RSD矩阵已经在Torino的创新硅传感器实验室中进行了激光设置,已通过激光设置进行了广泛的测试,而在Fermilab测试束设施中,使用120 GEV/C Proton束进行了较小的设备。测量的空间分辨率在$ 2.5之间; 70-100垫式几何形状和$ 17 \; $ $ $ $; μm$具有200-500矩阵,比二进制读取中可以实现的要素要好10倍($ bin \; size/ \ sqrt {12} $)。梁测试数据显示$ \ sim 40 \的时间分辨率; PS $ 200- $ $ $ $ $ $的音调设备,符合同样增益的LGAD传感器的最佳性能。
This paper presents the principles of operation of Resistive AC-Coupled Silicon Detectors (RSDs) and measurements of the temporal and spatial resolutions using a combined analysis of laser and beam test data. RSDs are a new type of n-in-p silicon sensor based on the Low-Gain Avalanche Diode (LGAD) technology, where the $n^+$ implant has been designed to be resistive, and the read-out is obtained via AC-coupling. The truly innovative feature of RSD is that the signal generated by an impinging particle is shared isotropically among multiple read-out pads without the need for floating electrodes or an external magnetic field. Careful tuning of the coupling oxide thickness and the $n^+$ doping profile is at the basis of the successful functioning of this device. Several RSD matrices with different pad width-pitch geometries have been extensively tested with a laser setup in the Laboratory for Innovative Silicon Sensors in Torino, while a smaller set of devices have been tested at the Fermilab Test Beam Facility with a 120 GeV/c proton beam. The measured spatial resolution ranges between $2.5\; μm$ for 70-100 pad-pitch geometry and $17\; μm$ with 200-500 matrices, a factor of 10 better than what is achievable in binary read-out ($bin\; size/ \sqrt{12}$). Beam test data show a temporal resolution of $\sim 40\; ps$ for 200-$μm$ pitch devices, in line with the best performances of LGAD sensors at the same gain.