论文标题
大规模启用D2D的雾网网络多阶段混合联盟学习
Multi-Stage Hybrid Federated Learning over Large-Scale D2D-Enabled Fog Networks
论文作者
论文摘要
联邦学习引起了极大的兴趣,几乎所有作品都集中在“星形”拓扑上,其中节点/设备各自连接到中央服务器。我们偏离了此体系结构,并将其扩展到网络维度到端设备和服务器之间有多个节点的情况。具体而言,我们开发了多阶段混合联合学习(MH-FL),这是一种内层和间间模型学习的混合体,将网络视为基于多层群集的结构。 MH-FL考虑了集群中节点之间的拓扑结构,包括通过设备到设备(D2D)通信形成的本地网络,并假定用于联合学习的半分离结构。它以协作/合作的方式(即使用D2D交互)在不同网络层处的设备在模型参数上形成本地共识,并将其与树状层次结构层之间的多阶段参数中继结合。我们在网络拓扑(例如,光谱半径)和学习算法(例如,在不同集群中的D2D回合的数量)相对于网络拓扑参数(例如,光谱半径)的参数得出了收敛的上限。我们在不同集群处获得了D2D回合的一组策略,以确保有限的最优差距或融合到全局最佳最佳。然后,我们为MH-FL开发了分布式控制算法,以随着时间的推移在每个群集中调整D2D回合,以满足特定的收敛标准。我们在现实世界数据集上的实验验证了我们的分析结果,并证明了MH-FL在资源利用指标方面的优势。
Federated learning has generated significant interest, with nearly all works focused on a "star" topology where nodes/devices are each connected to a central server. We migrate away from this architecture and extend it through the network dimension to the case where there are multiple layers of nodes between the end devices and the server. Specifically, we develop multi-stage hybrid federated learning (MH-FL), a hybrid of intra- and inter-layer model learning that considers the network as a multi-layer cluster-based structure. MH-FL considers the topology structures among the nodes in the clusters, including local networks formed via device-to-device (D2D) communications, and presumes a semi-decentralized architecture for federated learning. It orchestrates the devices at different network layers in a collaborative/cooperative manner (i.e., using D2D interactions) to form local consensus on the model parameters and combines it with multi-stage parameter relaying between layers of the tree-shaped hierarchy. We derive the upper bound of convergence for MH-FL with respect to parameters of the network topology (e.g., the spectral radius) and the learning algorithm (e.g., the number of D2D rounds in different clusters). We obtain a set of policies for the D2D rounds at different clusters to guarantee either a finite optimality gap or convergence to the global optimum. We then develop a distributed control algorithm for MH-FL to tune the D2D rounds in each cluster over time to meet specific convergence criteria. Our experiments on real-world datasets verify our analytical results and demonstrate the advantages of MH-FL in terms of resource utilization metrics.