论文标题

三维松本空间中的最小表面

Minimal surfaces in three-dimensional Matsumoto space

论文作者

Gangopadhyay, Ranadip, Tiwari, Bankteshwar

论文摘要

在本文中,我们在三维实际矢量空间上考虑了Matsumoto度量$ f = \ frac {α^2} {α-β} $,并获得表征平滑功能图的最小表面的偏微分方程,然后我们证明平面是唯一的表面。我们还获得了表征最小翻译表面的偏微分方程,并表明平面是唯一的表面。

In this paper we consider the Matsumoto metric $F=\frac{α^2}{α-β}$, on the three dimensional real vector space and obtain the partial differential equations that characterize the minimal surfaces which are graphs of smooth functions and then we prove that plane is the only such surface. We also obtain the partial differential equation that characterizes the minimal translation surfaces and show that again plane is the only such surface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源