论文标题
原子puiseux monoids中的基于长度的近似长度不变性
Approximating length-based invariants in atomic Puiseux monoids
论文作者
论文摘要
数值单型是非负整数的辅助添加剂亚monoid,而puiseux monoid是有理数的非负锥的添加剂下monoid。使用PUISEUX MONOID是数值单体副本的越来越多的结合,我们证明,这两类单体的某些分解不变性通过限制过程相关。这使我们能够将结果从数值扩展到puiseux monoids。我们通过恢复有关PUISEUX MONOIDS的各种已知结果来说明该技术的多功能性。
A numerical monoid is a cofinite additive submonoid of the nonnegative integers, while a Puiseux monoid is an additive submonoid of the nonnegative cone of the rational numbers. Using that a Puiseux monoid is an increasing union of copies of numerical monoids, we prove that some of the factorization invariants of these two classes of monoids are related through a limiting process. This allows us to extend results from numerical to Puiseux monoids. We illustrate the versatility of this technique by recovering various known results about Puiseux monoids.