论文标题

原子puiseux monoids中的基于长度的近似长度不变性

Approximating length-based invariants in atomic Puiseux monoids

论文作者

Polo, Harold

论文摘要

数值单型是非负整数的辅助添加剂亚monoid,而puiseux monoid是有理数的非负锥的添加剂下monoid。使用PUISEUX MONOID是数值单体副本的越来越多的结合,我们证明,这两类单体的某些分解不变性通过限制过程相关。这使我们能够将结果从数值扩展到puiseux monoids。我们通过恢复有关PUISEUX MONOIDS的各种已知结果来说明该技术的多功能性。

A numerical monoid is a cofinite additive submonoid of the nonnegative integers, while a Puiseux monoid is an additive submonoid of the nonnegative cone of the rational numbers. Using that a Puiseux monoid is an increasing union of copies of numerical monoids, we prove that some of the factorization invariants of these two classes of monoids are related through a limiting process. This allows us to extend results from numerical to Puiseux monoids. We illustrate the versatility of this technique by recovering various known results about Puiseux monoids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源