论文标题
Kakutani不等式出现的复杂性阈值
The complexity threshold for the emergence of Kakutani inequivalence
论文作者
论文摘要
我们表明,线性复杂性是Kakutani不等性的出现的阈值,用于最小化的子移位支持的可测量系统。特别是,我们表明,任意低的超级线性复杂性的最低次要缩影既容纳了伯诺利宽松的和非层次的伯努利阶段性措施,并且没有线性复杂性的最低次数可以接受不相等的度量。
We show that linear complexity is the threshold for the emergence of Kakutani inequivalence for measurable systems supported on a minimal subshift. In particular, we show that there are minimal subshifts of arbitrarily low super-linear complexity that admit both loosely Bernoulli and non-loosely Bernoulli ergodic measures and that no minimal subshift with linear complexity can admit inequivalent measures.