论文标题
De Branges-beburling Therorem用于完整的Fock空间
A de Branges-Beurling theorem for the full Fock space
论文作者
论文摘要
我们将特征在$ \ mathbb {c} ^d $上方的完整的fock空间中限制为限制性空间中包含的移位空间的de branges-beberling定理。在这里,完整的Fock空间被确定为几个非交换变量中的Square-ummable Taylor系列的\ Emph {非交换(NC)Hardy Space}。然后,我们继续研究NC内核和矢量值fock空间之间的乘数乘数的晶格操作。特别是,我们证明了具有共同系数范围空间的操作员值的空间乘数形成了一个有界的通用晶格模量自然等效关系。
We extend the de Branges-Beurling theorem characterizing the shift-invariant spaces boundedly contained in the Hardy space of square-summable power series to the full Fock space over $\mathbb{C} ^d$. Here, the full Fock space is identified as the \emph{Non-commutative (NC) Hardy Space} of square-summable Taylor series in several non-commuting variables. We then proceed to study lattice operations on NC kernels and operator-valued multipliers between vector-valued Fock spaces. In particular, we demonstrate that the operator-valued Fock space multipliers with common coefficient range space form a bounded general lattice modulo a natural equivalence relation.