论文标题
边界保护面具R-CNN
Boundary-preserving Mask R-CNN
论文作者
论文摘要
为了提高掩模定位准确性,例如分段。依靠完全卷积网络的现代实例分割方法执行像素的分类,该分类忽略了对象边界和形状,领导了粗糙和模糊的面具预测结果和不精确的本地化。为了解决这些问题,我们提出了一个概念上简单但有效的防边界蒙版R-CNN(BMASK R-CNN),以利用对象边界信息来提高掩模的定位精度。 BMASK R-CNN包含一个保护边界的面具头,其中对象边界和掩模是通过特征融合块相互学习的。结果,预测的掩码与对象边界更好地对齐。没有铃铛和哨子,BMASK R-CNN在可可数据集上的余量优于R-CNN。在CityScapes数据集中,有更准确的边界地面确实可用,因此BMASK R-CNN比Mask R-CNN获得了显着的改进。此外,当评估标准需要更好的本地化(例如AP $ _ {75} $)时,毫无疑问,BMASK R-CNN会获得更明显的改进,如图1所示。代码和模型可在\ url {https://github.com/hustvl/bmaskr-cnn}中获得。
Tremendous efforts have been made to improve mask localization accuracy in instance segmentation. Modern instance segmentation methods relying on fully convolutional networks perform pixel-wise classification, which ignores object boundaries and shapes, leading coarse and indistinct mask prediction results and imprecise localization. To remedy these problems, we propose a conceptually simple yet effective Boundary-preserving Mask R-CNN (BMask R-CNN) to leverage object boundary information to improve mask localization accuracy. BMask R-CNN contains a boundary-preserving mask head in which object boundary and mask are mutually learned via feature fusion blocks. As a result, the predicted masks are better aligned with object boundaries. Without bells and whistles, BMask R-CNN outperforms Mask R-CNN by a considerable margin on the COCO dataset; in the Cityscapes dataset, there are more accurate boundary groundtruths available, so that BMask R-CNN obtains remarkable improvements over Mask R-CNN. Besides, it is not surprising to observe that BMask R-CNN obtains more obvious improvement when the evaluation criterion requires better localization (e.g., AP$_{75}$) as shown in Fig.1. Code and models are available at \url{https://github.com/hustvl/BMaskR-CNN}.