论文标题

非等热不可压缩流的多功能混合方法

Versatile Mixed Methods for Non-Isothermal Incompressible Flows

论文作者

Miller, Edward A., Chen, Xi, Williams, David M.

论文摘要

本文的目的是扩展Chen和Williams最初针对“不可压缩的Navier-Stokes方程的多功能混合方法”中最初开发的多功能混合方法,具有2020年应用的计算机和数学,2020,(正在审查),以模拟非等温度不可压缩的不可压缩流。这些新的混合方法特别有趣,因为只有较小的修改可以应用于更广泛的流量,包括非等温度弱弱压缩流和完全可压缩的流动。在本文的主体中,我们仔细开发了这些混合方法来求解BousSinesQ模型方程。此后,我们证明了离散温度场的L2稳定性,并通过将它们应用于一组众所周知的对流问题来评估方法的实际行为。

The purpose of this paper is to extend the versatile mixed methods originally developed by Chen and Williams for isothermal flows in "Versatile Mixed Methods for the Incompressible Navier-Stokes Equations," Computers & Mathematics with Applications, 2020, (under review), to simulate non-isothermal incompressible flows. These new mixed methods are particularly interesting, as with only minor modifications they can be applied to a much broader range of flows, including non-isothermal weakly-compressible flows, and fully-compressible flows. In the main body of this paper, we carefully develop these mixed methods for solving the Boussinesq model equations. Thereafter, we prove the L2-stability of the discrete temperature field, and assess the practical behavior of the methods by applying them to a set of well-known convection problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源