论文标题

在无粘性的尘土飞扬的圆盘中迁移低质量行星

Migrating Low-Mass Planets in Inviscid Dusty Protoplanetary Discs

论文作者

Hsieh, He-Feng, Lin, Min-Kai

论文摘要

圆盘驱动的行星迁移是行星系统形成不可或缺的一部分。在标准的,以气体为主的原星盘,低质量行星或行星岩心进行快速向内迁移,并丢失给中央恒星。然而,最近的一些研究表明,原星盘中的固体成分可能对圆盘行星相互作用产生显着的动力学作用,尤其是当固体与气体质量比接近统一或更大的气体质量且粉尘范围的阻力力变得重要时。由于有几种方法可以通过圆盘风和压力颠簸的尘埃浮游来提高原月光盘的稳定丰度,因此了解行星如何通过尘土飞扬的环境迁移非常重要。为此,我们通过一组系统的高分辨率,二维数值模拟来研究尘埃圆盘中的行星迁移。我们表明,低质量行星的内向迁移可以通过尘土飞扬的动力学旋转扭矩减慢。我们还确定了适用于具有灰尘与气体比率$ \ gtrsim 0.3 $和粒子stokes数字$ \ gtrsim 0.03 $的随机迁移的新制度。在这些情况下,椎间盘的相互作用导致散射地球的小规模,强烈的尘埃涡流的持续发展,这些涡流散射,这些涡流可能会停止甚至逆转行星迁移。我们简要讨论结果的观察含义,并突出显示未来工作的方向。

Disc-driven planet migration is integral to the formation of planetary systems. In standard, gas-dominated protoplanetary discs, low-mass planets or planetary cores undergo rapid inwards migration and are lost to the central star. However, several recent studies indicate that the solid component in protoplanetary discs can have a significant dynamical effect on disc-planet interaction, especially when the solid-to-gas mass ratio approaches unity or larger and the dust-on-gas drag forces become significant. As there are several ways to raise the solid abundance in protoplanetary discs, for example through disc winds and dust-trapping in pressure bumps, it is important to understand how planets migrate through a dusty environment. To this end, we study planet migration in dust-rich discs via a systematic set of high-resolution, two-dimensional numerical simulations. We show that the inwards migration of low-mass planets can be slowed down by dusty dynamical corotation torques. We also identify a new regime of stochastic migration applicable to discs with dust-to-gas mass ratios $\gtrsim 0.3$ and particle Stokes numbers $\gtrsim 0.03$. In these cases, disc-planet interaction leads to the continuous development of small-scale, intense dust vortices that scatter the planet, which can potentially halt or even reverse the inwards planet migration. We briefly discuss the observational implications of our results and highlight directions for future work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源