论文标题

通过添加剂组合物数量的bin包装的更快的指数时间算法

A Faster Exponential Time Algorithm for Bin Packing With a Constant Number of Bins via Additive Combinatorics

论文作者

Nederlof, Jesper, Pawlewicz, Jakub, Swennenhuis, Céline M. F., Węgrzycki, Karol

论文摘要

在垃圾箱包装问题中,给出了$ n $项目,具有$ w_1,\ ldots,w_n $和$ m $ m $ bins,具有$ C_1,\ ldots,c_m $。目标是在每个bin $ j $的$ w(s_j)\ leq c_j $中找到$ s_1,\ ldots,s_m $的分区。 Björklund,Husfeldt和Koivisto(Sicomp 2009)提出了$ \ Mathcal {o}^\ star(2^n)$ time Algorithm用于BIN包装。在本文中,我们表明,对于\ mathbf {n} $中的每一个$ m \,存在一个常数$σ_m> 0 $,这样就可以用$ m $ bins的bin填充实例在$ \ mathcal {o}(o}(2^{(1-σ_m)n})中求解。在我们工作之前,这种改进的算法甚至以$ m $等于$ 4 $而闻名。我们方法中的关键步骤是关于子集总和的附加组合学的Littlewood-Offord理论的以下新结果:对于每一个$δ> 0 $,都存在$ \ varepsilon> 0 $,这样,如果$ | | \ | \ {x \ subseteq \ subseteq \ \ \ \ \ \ {1,\ ldots,n \ ldots,n \},n \}:w(x) \ geq 2^{(1- \ varepsilon)n} $对于某些$ V $,然后$ | \ {w(x):x \ subseteq \ {1,\ ldots,n \} \} | \ leq 2^{δn} $。

In the Bin Packing problem one is given $n$ items with weights $w_1,\ldots,w_n$ and $m$ bins with capacities $c_1,\ldots,c_m$. The goal is to find a partition of the items into sets $S_1,\ldots,S_m$ such that $w(S_j) \leq c_j$ for every bin $j$, where $w(X)$ denotes $\sum_{i \in X}w_i$. Björklund, Husfeldt and Koivisto (SICOMP 2009) presented an $\mathcal{O}^\star(2^n)$ time algorithm for Bin Packing. In this paper, we show that for every $m \in \mathbf{N}$ there exists a constant $σ_m >0$ such that an instance of Bin Packing with $m$ bins can be solved in $\mathcal{O}(2^{(1-σ_m)n})$ randomized time. Before our work, such improved algorithms were not known even for $m$ equals $4$. A key step in our approach is the following new result in Littlewood-Offord theory on the additive combinatorics of subset sums: For every $δ>0$ there exists an $\varepsilon >0$ such that if $|\{ X\subseteq \{1,\ldots,n \} : w(X)=v \}| \geq 2^{(1-\varepsilon)n}$ for some $v$ then $|\{ w(X): X \subseteq \{1,\ldots,n\} \}|\leq 2^{δn}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源