论文标题
混合$ P $ -SPIN球形模型中的梯度下降动力学:有限尺寸仿真和与平均场合的比较
Gradient descent dynamics in the mixed $p$-spin spherical model: finite size simulation and comparison with mean-field integration
论文作者
论文摘要
我们对具有两个和三个身体相互作用项的远程球形自旋玻璃进行数值模拟。我们研究梯度下降动力学和从初始条件下淬灭后发现的固有结构,在温度$ t_ {in} $下进行了良好的热层。在大型系统中,动力学严格与平均场动力学方程的集成一致。特别是,我们在液相内证实了起始初始温度的存在,在固有结构的能量下无疑取决于$ t_ {in} $。这种行为与纯模型相反,纯模型有一个“阈值能量”吸引液体中的所有初始构型。我们的结果增强了平均场自旋玻璃模型和超冷液体之间的类比。
We perform numerical simulations of a long-range spherical spin glass with two and three body interaction terms. We study the gradient descent dynamics and the inherent structures found after a quench from initial conditions, well thermalized at temperature $T_{in}$. In large systems, the dynamics strictly agrees with the integration of the mean-field dynamical equations. In particular, we confirm the existence of an onset initial temperature, within the liquid phase, below which the energy of the inherent structures undoubtedly depends on $T_{in}$. This behavior is in contrast with that of pure models, where there is a 'threshold energy' that attracts all the initial configurations in the liquid. Our results strengthen the analogy between mean-field spin glass models and supercooled liquids.