论文标题

$ \ mathbb {z} _2^n $ -manifolds上的Riemannian结构

Riemannian structures on $\mathbb{Z}_2^n$-manifolds

论文作者

Bruce, Andrew James, Grabowski, Janusz

论文摘要

非常宽松地,$ \ mathbb {z} _2^n $ -manifolds是`歧管,带有$ \ mathbb {z} _2^n $ graded坐标,其符号规则由他们的$ \ Mathbb {z} _2 _2^n $ -degrees确定。更加谨慎的是,可以在捆绑理论框架内理解这样的物体,就像超人群一样,但存在微妙的差异。在本文中,我们研究了Riemannian $ \ mathbb {z} _2^n $ -manifold的概念,即$ \ Mathbb {z} _2^n $ -manifold,配备了配备有riemannian的指标,该指标可以携带非零$ \ m i \ mathbb {z z} _2^n $ -degeegree。我们表明,Riemannian几何形状的基本概念和原则直接概括为$ \ Mathbb {z} _2^n $ - 几何的设置。例如,基本定理在这个较高的分级环境中。我们指出与Riemannian超级几何的相似性和差异。

Very loosely, $\mathbb{Z}_2^n$-manifolds are `manifolds' with $\mathbb{Z}_2^n$-graded coordinates and their sign rule is determined by the scalar product of their $\mathbb{Z}_2^n$-degrees. A little more carefully, such objects can be understood within a sheaf-theoretical framework, just as supermanifolds can, but with subtle differences. In this paper, we examine the notion of a Riemannian $\mathbb{Z}_2^n$-manifold, i.e., a $\mathbb{Z}_2^n$-manifold equipped with a Riemannian metric that may carry non-zero $\mathbb{Z}_2^n$-degree. We show that the basic notions and tenets of Riemannian geometry directly generalise to the setting of $\mathbb{Z}_2^n$-geometry. For example, the Fundamental Theorem holds in this higher graded setting. We point out the similarities and differences with Riemannian supergeometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源