论文标题

各向异性介质中周期结构的分散分析:液晶应用

Dispersion Analysis of Periodic Structures in Anisotropic Media: Application to Liquid Crystals

论文作者

Alex-Amor, Antonio, Palomares-Caballero, Angel, Mesa, Francisco, Quevedo-Teruel, Oscar, Padilla, Pablo

论文摘要

本文提出了一种使用通用各向异性培养基计算周期性和均匀结构的分散图的有效方法。该方法利用了全波商业模拟器处理具有各向异性介质的有限结构的能力。特别是,提出的方法通过以下方式扩展了商业本本征求解器的可能性:(i)可以分析具有非二进性介电常数和渗透率张量的各向异性材料; (ii)在仿真中可以轻松计算衰减常数,并且可以在传播区域和停止带区域进行计算; (iii)可以处理无界和辐射结构,例如漏水天线。后者的特征可能被认为是最引人注目的,因为结构必须用大多数商业模拟器的特征材料中的电/磁壁强度界定。在这项工作中,提出的方法专门用于研究微波炉和天线设备中的液晶(LCS)。因此,分析了各种基于LC的构型的分散性能,从典型的结构(例如波导和微带)到山脊间隙波基技术和泄漏波天线的复杂可重新配置相位变速器。我们的结果已通过先前报道的文献以及商业软件CST和HFSS的作品进行了验证。

This paper presents an efficient method to compute the dispersion diagram of periodic and uniform structures with generic anisotropic media. The method takes advantage of the ability of full-wave commercial simulators to deal with finite structures having anisotropic media. In particular, the proposed method extends the possibilities of commercial eigenmode solvers in the following ways: (i) anisotropic materials with non-diagonal permittivity and permeability tensors can be analyzed; (ii) the attenuation constant can easily be computed in both propagating and stopband regions and lossy materials can be included in the simulation; and (iii) unbounded and radiating structures such as leaky-wave antennas can be treated. The latter feature may be considered the most remarkable, since the structures must be forcefully bounded with electric/magnetic walls in the eigensolvers of most commercial simulators. In this work, the proposed method is particularized for the study of liquid crystals (LCs) in microwave and antenna devices. Thus, the dispersion properties of a great variety of LC-based configurations are analyzed, from canonical structures, such as waveguide and microstrip, to complex reconfigurable phase shifters in ridge gap-waveguide technology and leaky-wave antennas. Our results have been validated with previously reported works in the literature and with commercial software CST and HFSS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源