论文标题

多环网络控制系统中延迟敏感的联合最佳控制和资源管理

Delay-sensitive Joint Optimal Control and Resource Management in Multi-loop Networked Control Systems

论文作者

Mamduhi, Mohammad H., Maity, Dipankar, Hirche, Sandra, Baras, John S., Johansson, Karl H.

论文摘要

在网络控制系统的运行中,多个过程共享一个有限的资源和时间变化的成本敏感网络,通信延迟是不可避免的,并且首先受到部署间歇性传感器采样的控制系统的影响,以减少通信成本,从而限制非逼真的交易量来限制非逼真的传输,第二,第二,网络进行交通损失,以最小化的交通损失。在异质的情况下,控制系统只能容忍特定水平的传感器到控制器延迟,在控制和网络策略的设计中需要考虑延迟敏感性,以实现所需的性能保证。我们建议针对由多个随机线性时间流动系统组成的NCS的控制,采样和资源管理策略的跨层最佳共同设计,该系统将其传感器到控制器循环通过共享网络关闭。与先进的通信技术保持一致,我们假设网络为给定价格提供了一系列延迟变化的传输服务。本地采样器决定要付出更高的成本来访问低延迟渠道,或者延迟以降低的价格发送州样本。驻留在网络数据链接层中的资源管理器会仲裁频道访问,并在超过链接容量的情况下重新分配资源。本地闭环系统的性能是通过线性界限高斯成本和合适的通信成本的结合来衡量的,总体目标是最大程度地减少所有三个决策者的确定社会成本。我们在不同的跨层意识模型(包括恒定和时变参数)下得出了最佳控制,采样和资源分配策略,并表明较高的意识通常会以较高的计算复杂性为代价导致绩效提高。

In the operation of networked control systems, where multiple processes share a resource-limited and time-varying cost-sensitive network, communication delay is inevitable and primarily influenced by, first, the control systems deploying intermittent sensor sampling to reduce the communication cost by restricting non-urgent transmissions, and second, the network performing resource management to minimize excessive traffic and eventually data loss. In a heterogeneous scenario, where control systems may tolerate only specific levels of sensor-to-controller latency, delay sensitivities need to be considered in the design of control and network policies to achieve the desired performance guarantees. We propose a cross-layer optimal co-design of control, sampling and resource management policies for an NCS consisting of multiple stochastic linear time-invariant systems which close their sensor-to-controller loops over a shared network. Aligned with advanced communication technology, we assume that the network offers a range of latency-varying transmission services for given prices. Local samplers decide either to pay higher cost to access a low-latency channel, or to delay sending a state sample at a reduced price. A resource manager residing in the network data-link layer arbitrates channel access and re-allocates resources if link capacities are exceeded. The performance of the local closed-loop systems is measured by a combination of linear-quadratic Gaussian cost and a suitable communication cost, and the overall objective is to minimize a defined social cost by all three policy makers. We derive optimal control, sampling and resource allocation policies under different cross-layer awareness models, including constant and time-varying parameters, and show that higher awareness generally leads to performance enhancement at the expense of higher computational complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源