论文标题

CYCAS:自我监督的学习周期协会,以重新识别描述

CycAs: Self-supervised Cycle Association for Learning Re-identifiable Descriptions

论文作者

Wang, Zhongdao, Zhang, Jingwei, Zheng, Liang, Liu, Yixuan, Sun, Yifan, Li, Yali, Wang, Shengjin

论文摘要

本文提出了一种针对人重新识别(RE-ID)问题的自我监督的学习方法,其中现有的无监督方法通常依赖于伪标签,例如视频踪迹或聚类中的伪标签。使用伪标签的潜在缺点是错误可能会累积,并且估计伪ID的数量是一项挑战。我们介绍了一种不同的无监督方法,该方法使我们能够从原始视频中学习行人嵌入,而无需求助于伪标签。目的是构建一个与人重新目标相匹配的自我监督的借口任务。受到多目标跟踪中的\ emph {数据关联}概念的启发,我们提出了\ textbf {cyc} le \ textbf {as} sociation(\ textbf {cycas})任务:在向前又是向后,然后是一个视频框架之间的数据框架之间的数据关联之后,然后将数据关联执行后,然后是一个pertestrian实例,该实例应该与自身相关联。为了实现这一目标,该模型必须学习有意义的表示,可以很好地描述框架对中实例之间的对应关系。我们将离散的关联流程调整为可区分的形式,以便端到端的培训变得可行。实验分为两个方面:我们首先将我们的方法与七个基准上的现有无监督的重新ID方法进行了比较,并证明了Cycas的优越性。然后,为了进一步验证在现实世界应用中Cycas的实用值,我们对自我收集的视频进行培训,并在标准测试集上报告有希望的表现。

This paper proposes a self-supervised learning method for the person re-identification (re-ID) problem, where existing unsupervised methods usually rely on pseudo labels, such as those from video tracklets or clustering. A potential drawback of using pseudo labels is that errors may accumulate and it is challenging to estimate the number of pseudo IDs. We introduce a different unsupervised method that allows us to learn pedestrian embeddings from raw videos, without resorting to pseudo labels. The goal is to construct a self-supervised pretext task that matches the person re-ID objective. Inspired by the \emph{data association} concept in multi-object tracking, we propose the \textbf{Cyc}le \textbf{As}sociation (\textbf{CycAs}) task: after performing data association between a pair of video frames forward and then backward, a pedestrian instance is supposed to be associated to itself. To fulfill this goal, the model must learn a meaningful representation that can well describe correspondences between instances in frame pairs. We adapt the discrete association process to a differentiable form, such that end-to-end training becomes feasible. Experiments are conducted in two aspects: We first compare our method with existing unsupervised re-ID methods on seven benchmarks and demonstrate CycAs' superiority. Then, to further validate the practical value of CycAs in real-world applications, we perform training on self-collected videos and report promising performance on standard test sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源