论文标题

测深编辑的实验设计

Experimental Design for Bathymetry Editing

论文作者

Alafate, Julaiti, Freund, Yoav, Sandwell, David T., Tozer, Brook

论文摘要

我们描述了机器学习到现实世界计算机辅助标签任务的应用。我们的实验结果暴露了与机器学习中常用的IID假设的显着偏差。这些结果表明,将所有数据的常见随机分配到训练和测试中通常会导致性能差。

We describe an application of machine learning to a real-world computer assisted labeling task. Our experimental results expose significant deviations from the IID assumption commonly used in machine learning. These results suggest that the common random split of all data into training and testing can often lead to poor performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源