论文标题
复制虫孔的自由能
Free Energy from Replica Wormholes
论文作者
论文摘要
欧几里得虫洞 - 连接断开边界的几何形状 - 对该理论的标准量子机械解释提出了挑战。一种潜在的分辨率是,重力路径积分计算许多理论的集合平均值。连接的拓扑促进了最简单的可观察到的:自由能,该自由能是使用副本技巧进行计算的。这与用于计算纠缠熵的复制技巧不同,并且出现在任何广泛数量的计算中。我们认为,JT重力和简化版本的CGH都承认了一个制度,在这种制度中,连接的复制虫洞对自由能的贡献大于断开的拓扑。在这两种理论中,我们都发现了复制对称性破裂的证据,这让人联想到某些自旋玻璃的行为。我们从这个角度讨论有关集合平均重力平均的可能见解。
Euclidean wormholes -- geometries which connect disconnected boundaries -- present a challenge to a standard quantum mechanical interpretation of the theory. One potential resolution is that the gravitational path integral computes the ensemble average of many theories. The connected topologies contribute to the simplest possible observable: the free energy, which is computed using a replica trick. This is distinct from the replica trick used to compute entanglement entropies, and appears in the computation of any extensive quantity. We argue that both JT gravity and a simplified version of CGHS admit a regime where the contribution of connected replica wormholes to the free energy is larger than that of disconnected topologies. In both theories we find evidence of replica symmetry breaking, which is reminiscent of the behavior of certain spin glasses. We discuss possible insights about ensemble averaging in gravity from this perspective.