论文标题

复合 - 弗米尔海洋的霍尔粘度用于费米斯和玻色子

Hall Viscosity of the Composite-Fermion Fermi Seas for Fermions and Bosons

论文作者

Pu, Songyang

论文摘要

霍尔粘度已被提出为不可压缩的分数量子厅状态的拓扑特性,可以评估为浆果曲率。本文在$ν= 1/m $的复合效力费米海域的霍尔粘度上报告,其中$ m $甚至适合费米子,玻色子也很奇怪。没有通过查看$ 1/m $复合费米斯海作为$ n \ rightarrow \ rightarrow \ infty $限制Jain $ν= n/(nm \ pm 1)$的状态的$ 1/m $复合费米斯海的$ 1/m $复合费用fermi海洋的价格明确定义的价值,其$ n \ infty $($ nm \ pm 1)$ \ infty $ in lim lim $ n \ rightarrow \ infty $。一个直接的计算表明,复合弗米·费米海的霍尔粘度是有限的,并且在整个$τ$空间中均未拓扑量化,尽管它们在拓扑上均未量化,但也相对稳定。我发现正方形的$ν= 1/2 $复合 - 弗米海浪函数产生了粒子 - 孔对称性的霍尔粘度,这也与Dirac Complacte fermions的轨道旋转$ 1/2 $一致。我将我的数值结果与一些理论猜想进行了比较。

The Hall viscosity has been proposed as a topological property of incompressible fractional quantum Hall states and can be evaluated as Berry curvature. This paper reports on the Hall viscosities of composite-fermion Fermi seas at $ν=1/m$, where $m$ is even for fermions and odd for bosons. A well-defined value for the Hall viscosity is not obtained by viewing the $1/m$ composite-fermion Fermi seas as the $n\rightarrow \infty$ limit of the Jain $ν=n/(nm\pm 1)$ states, whose Hall viscosities $(\pm n+m)\hbar ρ/4$ ($ρ$ is the two-dimensional density) approach $\pm \infty$ in the limit $n\rightarrow \infty$. A direct calculation shows that the Hall viscosities of the composite-fermion Fermi sea states are finite, and also relatively stable with system size variation, although they are not topologically quantized in the entire $τ$ space. I find that the $ν=1/2$ composite-fermion Fermi sea wave function for a square torus yields a Hall viscosity that is expected from particle-hole symmetry and is also consistent with the orbital spin of $1/2$ for Dirac composite fermions. I compare my numerical results with some theoretical conjectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源