论文标题

规模不变$ d = 3 $理论的$ ϕ^n $的异常尺寸

Anomalous dimensions for $ϕ^n$ in scale invariant $d=3$ theory

论文作者

Jack, I., Jones, D. R. T.

论文摘要

最近显示,可以半经典地计算运算符$ ϕ^n $的缩放维度,$ d = 3 $理论可以在扰动理论中以领先和倒数$ n $进行验证。在这里,我们将这一验证扩展到六个循环,再次在领先和转标为$ n $上。然后,我们对具有多个真实标量的理论和$ o(n)$不变的相互作用进行类似的练习。我们还研究了此示例的强耦合方案。

Recently it was shown that the scaling dimension of the operator $ϕ^n$ in scale-invariant $d=3$ theory may be computed semiclassically, and this was verified to leading order (two loops) in perturbation theory at leading and subleading $n$. Here we extend this verification to six loops, once again at leading and subleading $n$. We then perform a similar exercise for a theory with a multiplet of real scalars and an $O(N)$ invariant hexic interaction. We also investigate the strong-coupling regime for this example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源