论文标题

监视人群管理的物理距离:实时轨迹和小组分析

Monitoring physical distancing for crowd management: real-time trajectory and group analysis

论文作者

Pouw, Caspar A. S., Toschi, Federico, van Schadewijk, Frank, Corbetta, Alessandro

论文摘要

物理距离作为包含COVID-19的扩散的一种措施,正在定义“新常态”。除非属于家庭,否则要求共享空间中的行人观察到最小(依赖于国家 /地区的)成对距离。一致的是,公共空间的经理可以执行或监视此约束。由于对公共空间中行人动态的隐私实时跟踪是一个越来越多的现实,因此自然要利用这些工具来分析依从性物理疏远并比较人群管理测量的有效性。典型的问题是:“在哪些条件下非家庭成员侵犯社会疏远?”,“有反复的罪犯吗?”和“新的人群管理措施如何表现?”。值得注意的是,与大量人群打交道,例如在火车站,在计算上迅速挑战。 在这项工作中,我们有两个方面的目标:首先,我们提出了一个有效且可扩展的分析框架来通过稀疏图进行处理,离线或实时的行人跟踪数据。该框架有效地解决了上面提到的所有问题,代表了通过矢量加权图连接的行人互动。在此基础上,我们可以以符合隐私的方式解除远程犯罪者和家人。其次,我们对荷兰火车平台中的相互距离和暴露时间进行了彻底的分析,并通过物理学观察物作为径向分布函数比较了前循环和当前数据。这种方法的多功能性和简单性是为了分析公共交通设施中的人群管理措施而开发的,可以解决除了物理距离之外的问题,例如对群体的隐私发现及其运动模式的分析。

Physical distancing, as a measure to contain the spreading of Covid-19, is defining a "new normal". Unless belonging to a family, pedestrians in shared spaces are asked to observe a minimal (country-dependent) pairwise distance. Coherently, managers of public spaces may be tasked with the enforcement or monitoring of this constraint. As privacy-respectful real-time tracking of pedestrian dynamics in public spaces is a growing reality, it is natural to leverage on these tools to analyze the adherence to physical distancing and compare the effectiveness of crowd management measurements. Typical questions are: "in which conditions non-family members infringed social distancing?", "Are there repeated offenders?", and "How are new crowd management measures performing?". Notably, dealing with large crowds, e.g. in train stations, gets rapidly computationally challenging. In this work we have a two-fold aim: first, we propose an efficient and scalable analysis framework to process, offline or in real-time, pedestrian tracking data via a sparse graph. The framework tackles efficiently all the questions mentioned above, representing pedestrian-pedestrian interactions via vector-weighted graph connections. On this basis, we can disentangle distance offenders and family members in a privacy-compliant way. Second, we present a thorough analysis of mutual distances and exposure-times in a Dutch train platform, comparing pre-Covid and current data via physics observables as Radial Distribution Functions. The versatility and simplicity of this approach, developed to analyze crowd management measures in public transport facilities, enable to tackle issues beyond physical distancing, for instance the privacy-respectful detection of groups and the analysis of their motion patterns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源