论文标题
重新思考图像通过具有特征均衡化的共同编码器介绍的图像
Rethinking Image Inpainting via a Mutual Encoder-Decoder with Feature Equalizations
论文作者
论文摘要
基于深层编码器的CNN具有用于孔填充的高级图像镶嵌方法。尽管现有方法在孔区域逐步恢复结构和纹理,但它们通常使用两个编码器解码器进行单独恢复。学会了每个编码器的CNN特征,以捕获缺失的结构或纹理,而无需考虑整体。这些编码器功能的利用不足限制了恢复结构和纹理的性能。在本文中,我们提出了一个共同编码器CNN,以供两者进行联合恢复。我们使用来自编码器的深层和浅层层中的CNN特征分别表示输入图像的结构和纹理。深层特征将发送到结构分支,并将浅层特征发送到纹理分支。在每个分支中,我们以多个尺度的CNN特征填充孔。来自两个分支的填充CNN特征是连接的,然后均衡。在特征均衡期间,我们首先重新启动通道的注意力,并提出双边传播激活函数以实现空间均衡。为此,结构和纹理的填充CNN功能相互受益,以表示所有特征级别的图像内容。我们使用均衡功能来补充解码器功能,以通过跳过连接来生成输出图像。基准数据集上的实验表明,所提出的方法有效地恢复结构和纹理,并对最新方法进行有利的作用。
Deep encoder-decoder based CNNs have advanced image inpainting methods for hole filling. While existing methods recover structures and textures step-by-step in the hole regions, they typically use two encoder-decoders for separate recovery. The CNN features of each encoder are learned to capture either missing structures or textures without considering them as a whole. The insufficient utilization of these encoder features limit the performance of recovering both structures and textures. In this paper, we propose a mutual encoder-decoder CNN for joint recovery of both. We use CNN features from the deep and shallow layers of the encoder to represent structures and textures of an input image, respectively. The deep layer features are sent to a structure branch and the shallow layer features are sent to a texture branch. In each branch, we fill holes in multiple scales of the CNN features. The filled CNN features from both branches are concatenated and then equalized. During feature equalization, we reweigh channel attentions first and propose a bilateral propagation activation function to enable spatial equalization. To this end, the filled CNN features of structure and texture mutually benefit each other to represent image content at all feature levels. We use the equalized feature to supplement decoder features for output image generation through skip connections. Experiments on the benchmark datasets show the proposed method is effective to recover structures and textures and performs favorably against state-of-the-art approaches.