论文标题

行星种群的形成III:核心成分和大气蒸发

Formation of Planetary Populations III: Core Composition & Atmospheric Evaporation

论文作者

Alessi, Matthew, Inglis, Julie, Pudritz, Ralph E.

论文摘要

外球星质量半径图表明,在给定的质量下,超地球显示了广泛的半径,因此平均密度。使用行星种群合成模型,我们探索了塑造这种分布的关键物理因素:行星的固体核心成分及其大气结构。对于前者,我们使用平衡磁盘化学模型在整个地层整个地层上都在行星岩心上跟踪矿物质。对于后者,我们在形成过程中跟踪气体积聚,并考虑光蒸发驱动的大气质量损失,以确定磁盘阶段后的积聚气体逸出的部分。我们发现,小轨道半径($ \ lyssim $ 0.1AU)在大气中剥离海王星和亚星期,在短期超级地球的形成中起着关键作用。核心成分受其形成的陷阱的强烈影响。我们还发现,在较大的轨道$ \ sim $ 1au上,小轨道半径$ \ lessim $ 0.5au和富含冰块的行星(最高50 \%)之间的类似地球行星的组合物之间的分离。这与从小轨道轨道时期的低质量行星半径谷的观察到的位置推断出的类似地球的平均密度非常相对应。我们的模型产生的行星半径可与群众的观测值$ \ sim $ 1-3M $ _ \ oplus $相媲美。在较大的质量下,行星的积聚气体显着增加了其半径比大多数观察到的数据大。尽管光蒸发,在小轨道半径上影响行星$ \ lessim $ 0.1AU,减少了这些行星半径的子集并改善了我们的比较,但我们计算的群体中的大多数行星都不会受到影响,因为它们在较大的分离处形成较大的频率。

The exoplanet mass radius diagram reveals that super Earths display a wide range of radii, and therefore mean densities, at a given mass. Using planet population synthesis models, we explore the key physical factors that shape this distribution: planets' solid core compositions, and their atmospheric structure. For the former, we use equilibrium disk chemistry models to track accreted minerals onto planetary cores throughout formation. For the latter, we track gas accretion during formation, and consider photoevaporation-driven atmospheric mass loss to determine what portion of accreted gas escapes after the disk phase. We find that atmospheric stripping of Neptunes and sub-Saturns at small orbital radii ($\lesssim$0.1AU) plays a key role in the formation of short-period super Earths. Core compositions are strongly influenced by the trap in which they formed. We also find a separation between Earth-like planet compositions at small orbital radii $\lesssim$0.5AU and ice-rich planets (up to 50\% by mass) at larger orbits $\sim$1AU. This corresponds well with the Earth-like mean densities inferred from the observed position of the low-mass planet radius valley at small orbital periods. Our model produces planet radii comparable to observations at masses $\sim$1-3M$_\oplus$. At larger masses, planets' accreted gas significantly increases their radii to be larger than most of the observed data. While photoevaporation, affecting planets at small orbital radii $\lesssim$0.1AU, reduces a subset of these planets' radii and improves our comparison, most planets in our computed populations are unaffected due to low FUV fluxes as they form at larger separations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源