论文标题

混合精液多族求解器的代数错误分析

Algebraic error analysis for mixed-precision multigrid solvers

论文作者

McCormick, Stephen F., Benzaken, Joseph, Tamstorf, Rasmus

论文摘要

本文建立了第一个理论框架,用于分析使用混合精确迭代式转换求解器分析对多机方法的舍入效应。尽管由离散的线性椭圆PDE产生的稀疏对称阳性(SPD)矩阵方程激励,但该框架纯粹是代数,因此它适用于不一定来自连续体的矩阵。基于所谓的能量或$ a $ norm,这对于许多涉及SPD矩阵的问题来说是自然的规范,我们提供了一种规范的正向误差分析,并引入了多摩尔德求解器的渐进精度概念。多机层次结构的每个级别都使用三个不同的精度,每个精度都随着水平的细度而增加,但是以不同的速率,从而确保大部分计算使用最低的精度。能源规范中此处发展的理论结果在重要方面基于欧几里得规范的先前理论有很大差异。特别是,我们表明,简单地将确切的结果舍入到有限的精度会导致能量规范的误差,该误差与$κ$的平方根成正比,这是相关的矩阵条件编号。 (相比之下,在欧几里得规范中测量时,此错误是$ 1 $的。)鉴于此观察结果,我们表明,V-Cycles和Full Multigrid的限制准确性在同样与$κ^{1/2} $成正比的意义上都是最佳的。此外,我们表明,由于四舍五入的损失,收敛率的损失与$κ^{1/2} $成比例增长,但认为这种损失在实践中并不重要。此处介绍的理论是迭代细化的能量规范的第一个正向误差分析,也是Multigrid的第一个四舍五入误差分析。

This paper establishes the first theoretical framework for analyzing the rounding-error effects on multigrid methods using mixed-precision iterative-refinement solvers. While motivated by the sparse symmetric positive definite (SPD) matrix equations that arise from discretizing linear elliptic PDEs, the framework is purely algebraic such that it applies to matrices that do not necessarily come from the continuum. Based on the so-called energy or $A$ norm, which is the natural norm for many problems involving SPD matrices, we provide a normwise forward error analysis, and introduce the notion of progressive precision for multigrid solvers. Each level of the multigrid hierarchy uses three different precisions that each increase with the fineness of the level, but at different rates, thereby ensuring that the bulk of the computation uses the lowest possible precision. The theoretical results developed here in the energy norm differ notably from previous theory based on the Euclidean norm in important ways. In particular, we show that simply rounding an exact result to finite precision causes an error in the energy norm that is proportional to the square root of $κ$, the associated matrix condition number. (By contrast, this error is of order $1$ when measured in the Euclidean norm.) Given this observation, we show that the limiting accuracy for both V-cycles and full multigrid is optimal in the sense that it is also proportional to $κ^{1/2}$ in energy. Additionally, we show that the loss of convergence rate due to rounding grows in proportion to $κ^{1/2}$, but argue that this loss is insignificant in practice. The theory presented here is the first forward error analysis in the energy norm of iterative refinement and the first rounding error analysis of multigrid in general.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源