论文标题
基准测试超导量子处理器上的16个元素量子搜索算法
Benchmarking 16-element quantum search algorithms on superconducting quantum processors
论文作者
论文摘要
我们介绍了在IBM量子处理器上运行4 Quit非结构化搜索的实验结果。我们最好的尝试达到了24.5%的成功率。我们尝试了几种算法,并使用量子搜索中的最新发展来减少当前被认为是量子计算中主要错误来源的纠缠门的数量。将算法性能的理论期望与实际数据进行比较,我们探索了硬件限制,显示了量子处理器上性能的尖锐,相变的降解。我们得出的结论是,设计硬件感知算法并在NISQ设备上包括任何其他低级优化非常重要。
We present experimental results on running 4-qubit unstructured search on IBM quantum processors. Our best attempt attained probability of success around 24.5%. We try several algorithms and use the most recent developments in quantum search to reduce the number of entangling gates that are currently considered the main source of errors in quantum computations. Comparing theoretical expectations of an algorithm performance with the actual data, we explore the hardware limits, showing sharp, phase-transition-like degradation of performance on quantum processors. We conclude that it is extremely important to design hardware-aware algorithms and to include any other low level optimizations on NISQ devices.