论文标题
非线性sigma模型中的不扩散
Undular diffusion in nonlinear sigma models
论文作者
论文摘要
我们通过在非统一统一的谎言基团下不变的非权威经典田间理论中的电荷传输的一般特征,通过检查以有限的电荷密度(极化集合)以宏伟的典型集合中的两点动态相关函数的完整结构。在明确破坏非亚伯对称性时,出现了两种以动态指数为特征的截然不同的运输定律,$ z = 2 $。尽管在不间断的对称部门中,cartan场表现出正常的扩散,但受金石模式的非线性类似物控制的横向部门揭示了以复杂的扩散常数和以相关性相关性概率中复杂的扩散常数和起伏模式为特征的非常规扩散的法律。在强极化的极限中,一个人检索了未耦合的线性金石模式的假想时间扩散,而对于弱极化,扩散常数的假想成分变小。在高级对称性的模型中,我们证明了不同横向部门之间没有动态相关性。
We discuss general features of charge transport in non-relativistic classical field theories invariant under non-abelian unitary Lie groups by examining the full structure of two-point dynamical correlation functions in grand-canonical ensembles at finite charge densities (polarized ensembles). Upon explicit breaking of non-abelian symmetry, two distinct transport laws characterized by dynamical exponent $z=2$ arise. While in the unbroken symmetry sector the Cartan fields exhibit normal diffusion, the transversal sectors governed by the nonlinear analogues of Goldstone modes disclose an unconventional law of diffusion characterized by a complex diffusion constant and undulating patterns in the spatiotemporal correlation profiles. In the limit of strong polarization, one retrieves the imaginary-time diffusion for uncoupled linear Goldstone modes, whereas for weak polarizations the imaginary component of the diffusion constant becomes small. In models of higher rank symmetry, we prove absence of dynamical correlations among distinct transversal sectors.