论文标题

基于对象检测和LSTM的足球视频流的自动通过注释

Automatic Pass Annotation from Soccer VideoStreams Based on Object Detection and LSTM

论文作者

Sorano, Danilo, Carrara, Fabio, Cintia, Paolo, Falchi, Fabrizio, Pappalardo, Luca

论文摘要

足球分析吸引了对学术界和行业的兴趣,这要归功于描述每场比赛中所有时空事件的数据的可用性。这些事件(例如,通行证,投篮,犯规)是由人工运营商手动收集的,在时间和经济资源方面为数据提供商构成了相当大的成本。在本文中,我们描述了Passnet,这是一种识别足球中最常见事件的方法,即从视频流中通过。我们的模型结合了一组人工神经网络,这些神经网络从视频流中进行特征提取,对象检测以识别球的位置和球员,以及将框架序列分类为通过或不通过。我们在不同的情况下测试Passnet,这取决于条件与训练的比赛的相似性。我们的结果显示了良好的分类结果,即使比赛的视频条件和训练集有很大差异,但对于基线分类器而言,通过检测的准确性显着提高。 Passnet是迈向自动事件注释系统的第一步,该系统可能会打破时间和事件注释的成本,从而为次要和非专业部门,青年联赛以及一般而言的竞赛目前没有由数据提供者注释的竞赛。

Soccer analytics is attracting increasing interest in academia and industry, thanks to the availability of data that describe all the spatio-temporal events that occur in each match. These events (e.g., passes, shots, fouls) are collected by human operators manually, constituting a considerable cost for data providers in terms of time and economic resources. In this paper, we describe PassNet, a method to recognize the most frequent events in soccer, i.e., passes, from video streams. Our model combines a set of artificial neural networks that perform feature extraction from video streams, object detection to identify the positions of the ball and the players, and classification of frame sequences as passes or not passes. We test PassNet on different scenarios, depending on the similarity of conditions to the match used for training. Our results show good classification results and significant improvement in the accuracy of pass detection with respect to baseline classifiers, even when the match's video conditions of the test and training sets are considerably different. PassNet is the first step towards an automated event annotation system that may break the time and the costs for event annotation, enabling data collections for minor and non-professional divisions, youth leagues and, in general, competitions whose matches are not currently annotated by data providers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源