论文标题
关于广义的langevin动力学和全球平均温度的建模
On Generalized Langevin Dynamics and the Modelling of Global Mean Temperature
论文作者
论文摘要
气候科学采用了模型的层次结构,将简化能源平衡模型(EBM)的障碍与全球循环模型的细节进行了交易。自哈塞尔曼(Hasselmann)开创性的工作以来,随机EBM允许对气候波动和噪音进行处理。但是,最近有人声称观察激励了全球平均温度对扰动的重尾时间反应函数。我们的互补方法利用了Hasselmann的EBM与1908年Langevin's Eqeation在物理学中的原始均值随机模型之间的对应关系。我们提出了绘制统计力学中已知的模型,Mori-Kubo广义Langevin方程(GLE),以推广Hasselmann EBM。如果存在,则远程记忆将GLE简化为分数Langevin方程(FLE)。我们描述了映射到GLE并逃跑的相应EBM,简要讨论了他们的解决方案,并将其与LoveJoy的新分数能量平衡模型联系起来。
Climate science employs a hierarchy of models, trading the tractability of simplified energy balance models (EBMs) against the detail of Global Circulation Models. Since the pioneering work of Hasselmann, stochastic EBMs have allowed treatment of climate fluctuations and noise. However, it has recently been claimed that observations motivate heavy-tailed temporal response functions in global mean temperature to perturbations. Our complementary approach exploits the correspondence between Hasselmann's EBM and the original mean-reverting stochastic model in physics, Langevin's equation of 1908. We propose mapping a model well known in statistical mechanics, the Mori-Kubo Generalised Langevin Equation (GLE) to generalise the Hasselmann EBM. If present, long range memory then simplifies the GLE to a fractional Langevin equation (FLE). We describe the corresponding EBMs that map to the GLE and FLE, briefly discuss their solutions, and relate them to Lovejoy's new Fractional Energy Balance Model.