论文标题

随机图中有针对性的干预

Targeted Intervention in Random Graphs

论文作者

Brown, William, Patange, Utkarsh

论文摘要

我们考虑一个个人在网络中互动的设置,每个选择的动作都可以优化实用程序作为邻居行动的函数。旨在以平衡最大化社会福利的中央权威可以通过支付一些成本来转移个人激励措施来进行干预,并且可以使用图表的光谱分解来计算最佳干预措施,但是如果邻接矩阵未知,则在实践中是不可行的。在本文中,我们研究了针对邻近矩阵未知的图形设计干预策略的问题,并从某些分布中得出。对于几个常用的随机图模型,我们表明有一项干预措施,与预期的邻接矩阵的第一个特征向量成正比,当预算足够大时,几乎所有生成的图形都几乎是最佳的。当我们不知道分布时,我们还提供了几种有效的基于采样的方法,以近似恢复第一个特征向量。总体而言,我们的分析比较了三类干预措施:那些不使用有关网络数据的数据,使用某些数据的数据(例如分布知识或图表的查询)以及完全最佳的数据。我们评估了有关合成和现实世界网络数据的这些干预策略,我们的结果表明,随机图模型的分析对于确定某些启发式方法何时在实践中表现良好很有用。

We consider a setting where individuals interact in a network, each choosing actions which optimize utility as a function of neighbors' actions. A central authority aiming to maximize social welfare at equilibrium can intervene by paying some cost to shift individual incentives, and the optimal intervention can be computed using the spectral decomposition of the graph, yet this is infeasible in practice if the adjacency matrix is unknown. In this paper, we study the question of designing intervention strategies for graphs where the adjacency matrix is unknown and is drawn from some distribution. For several commonly studied random graph models, we show that there is a single intervention, proportional to the first eigenvector of the expected adjacency matrix, which is near-optimal for almost all generated graphs when the budget is sufficiently large. We also provide several efficient sampling-based approaches for approximately recovering the first eigenvector when we do not know the distribution. On the whole, our analysis compares three categories of interventions: those which use no data about the network, those which use some data (such as distributional knowledge or queries to the graph), and those which are fully optimal. We evaluate these intervention strategies on synthetic and real-world network data, and our results suggest that analysis of random graph models can be useful for determining when certain heuristics may perform well in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源