论文标题

图模型概述,事件尺度结构和事件的链

Graph model overview, events scales structure and chains of events

论文作者

Pugliese, D.

论文摘要

我们为时空出现的背景独立的关系方法提供了图形模型。讨论了[1]中详述的一般思想和图主要特征。这是一个组合(动力学)公制图,在顶点上有色,并具有图形顶点上颜色概率的经典分布。图形颜色确定图形顶点(事件)的簇中的图形结构,这些图形可以是单色(均质环)或多色(不均匀环)。图形从初始种子图状态到较高(共形膨胀)图状态之后,该概率是保守的。新兴结构在不同尺度(状态)上具有自相似特征。从着色,不同级别的顶点,因此作为彩色顶点的新聚集体出现。在第二个(派生的)图级别中,派生的图顶点对应于初始图的多色边(具有不同颜色的顶点)。顶点骨料是相关的,因为某些级别(图状态)与丛集和扭曲器(涉及Clifford统计数据)。在彩色图上定义了两个度量级别,第一级是图表上定义的自然度量,第二级从第一个级别出现,并且由于对称性而引起。公制结构反映了在共形膨胀下与其状态演变下形成的图形彩色结构。在某些特殊情况下,顶点/事件链可能与字符串的概括有关。

We present a graph model for a background independent, relational approach to spacetime emergence. The general idea and the graph main features, detailed in [1], are discussed. This is a combinatorial (dynamical) metric graph, colored on vertexes, endowed with a classical distribution of colors probability on the graph vertexes. The graph coloring determines the graph structure in clusters of graph vertices (events) that can be monochromatic (homogeneous loops) or polychromatic (inhomogeneous loops). The probability is conserved after the graph conformal expansion from an initial seed graph state to higher (conformally expanded) graph states. The emerging structure has self-similar characteristics on different scales (states). From the coloring, different levels of vertices and thus graph levels arise as new aggregates of colored vertices. In this second (derived) graphs level, the derived graph vertices correspond to the polychromatic edges (with differently colored vertices) of the initial graph. Vertex aggregates are related, as some levels (graph states) to plexors and twistors (involving Clifford statistics). Two metric levels are defined on the colored graph, the first level is a natural metric defined on the graph, the second level emerges from the first and related, due to symmetries. Metric structure reflects the graph colored structure under conformal transformations evolving with its states under conformal expansion. In some special cases vertices/events chains could be related to strings generalizations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源