论文标题

用于大脑信号分析图理论的教程

A Tutorial on Graph Theory for Brain Signal Analysis

论文作者

Laskaris, Nikolaos, Adamos, Dimitrios A., Bezerianos, Anastasios

论文摘要

本教程论文是指使用图理论概念来分析大脑信号。出于教学目的,它分为两个部分:理论和应用。在第一部分中,我们通过引入图理论的一些基本元素和构图算法工具开始,这些工具可用于数据分析目的。接下来,我们描述如何适应这些概念来处理不断发展的连接性并获得对网络重组的见解。最后,引入了位于给定图上的信号的概念,并提供了来自图形信号处理(GSP)的新兴字段(GSP)的元素。第二部分是对前面描述的工具和技术的务实证明。它基于分析包含来自Visual ERP范式的单试响应的多试数据集。本文以图形理论的最新趋势的简要概述结束,该趋势将在不久的将来塑造大脑信号处理,并就图形理论方法的相关性进行了更一般的讨论,以分析连续模式神经记录。

This tutorial paper refers to the use of graph-theoretic concepts for analyzing brain signals. For didactic purposes it splits into two parts: theory and application. In the first part, we commence by introducing some basic elements from graph theory and stemming algorithmic tools, which can be employed for data-analytic purposes. Next, we describe how these concepts are adapted for handling evolving connectivity and gaining insights into network reorganization. Finally, the notion of signals residing on a given graph is introduced and elements from the emerging field of graph signal processing (GSP) are provided. The second part serves as a pragmatic demonstration of the tools and techniques described earlier. It is based on analyzing a multi-trial dataset containing single-trial responses from a visual ERP paradigm. The paper ends with a brief outline of the most recent trends in graph theory that are about to shape brain signal processing in the near future and a more general discussion on the relevance of graph-theoretic methodologies for analyzing continuous-mode neural recordings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源