论文标题

显式kronecker-weyl定理和应用程序

Explicit Kronecker-Weyl theorems and applications to prime number races

论文作者

Bailleul, Alexandre

论文摘要

我们证明了在离散和连续设置中的Kronecker-Weyl定理的明确版本,而没有任何线性独立性假设。作为一种应用,我们提出了一种针对质数种族中渐近密度,数字字段和函数字段的替代方法,其中一个变量的一个变量,用随机变量的语言。我们的方法使我们能够证明其中一些密度的存在和积极性的新结果,在种族上,在功能领域进行了种族,不需要任何线性独立性假设。

We prove explicit versions of the Kronecker-Weyl theorems, both in a discrete and a continuous settings, without any linear independence hypothesis. As an application, we propose an alternative approach to problems concerning asymptotic densities in prime number races, over number fields and over function fields in one variable over finite fields, in the language of random variables. Our approach allows us to prove new results on the existence and positivity of some of those densities, which, in the case of races over function fields, do not require any linear independence hypothesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源