论文标题
超越时刻:计算天体物理学中辐射运输的相对论晶格玻璃体方法
Beyond moments: relativistic Lattice-Boltzmann methods for radiative transport in computational astrophysics
论文作者
论文摘要
我们提出了一种在计算天体物理学通常遇到的多维场景中辐射转移方程(RTE)的数值解的新方法。该方法基于Boltzmann方程的直接解,通过晶格Boltzmann(LB)方程的延伸,并允许在辐射场通过吸收,发射和散射与背景流体相互作用时对辐射场的演变进行建模。作为该方法的第一个应用,我们将注意力限制在特殊的重复框架内的频率独立(“灰色”)公式上,该框架也可以用于经典的计算天体物理学。对于许多标准测试,这些测试在光学薄,光学较厚和具有静态流体的中间状态下的性能,我们显示了LB方法产生与分析溶液相匹配的准确和收敛结果的能力。我们还将LB方法与常用的基于力矩的方案(例如M1方案)进行对比。通过这种方式,我们能够强调说,LB方法为非平凡的自由流动方案和中间光学深度制度提供了正确的解决方案,M1方法要么失败或提供不准确的解决方案。另一方面,当耦合到动态流体时,我们在相对论流动力的场景中使用LB方法提出了RTE的第一个自洽解决方案。最后,我们表明,除了在所有制度中提供更准确的结果外,LB方法还具有与M1方案相比较小或可比的计算成本。
We present a new method for the numerical solution of the radiative-transfer equation (RTE) in multidimensional scenarios commonly encountered in computational astrophysics. The method is based on the direct solution of the Boltzmann equation via an extension of the Lattice Boltzmann (LB) equation and allows to model the evolution of the radiation field as it interacts with a background fluid, via absorption, emission, and scattering. As a first application of this method, we restrict our attention to a frequency independent ("grey") formulation within a special-relativistic framework, which can be employed also for classical computational astrophysics. For a number of standard tests that consider the performance of the method in optically thin, optically thick and intermediate regimes with a static fluid, we show the ability of the LB method to produce accurate and convergent results matching the analytic solutions. We also contrast the LB method with commonly employed moment-based schemes for the solution of the RTE, such as the M1 scheme. In this way, we are able to highlight that the LB method provides the correct solution for both non-trivial free-streaming scenarios and the intermediate optical-depth regime, for which the M1 method either fails or provides inaccurate solutions. When coupling to a dynamical fluid, on the other hand, we present the first self-consistent solution of the RTE with LB methods within a relativistic-hydrodynamic scenario. Finally, we show that besides providing more accurate results in all regimes, the LB method features smaller or comparable computational costs compared to the M1 scheme.