论文标题

使用深神经网络改善了对抗图像的检测

Improved Detection of Adversarial Images Using Deep Neural Networks

论文作者

Gao, Yutong, Pan, Yi

论文摘要

机器学习技术非常部署在行业和学院中。最近的研究表明,用于分类任务的机器学习模型很容易受到对抗性示例的影响,这限制了在高精度要求的领域中使用应用程序。我们提出了一种称为特征图的新方法,以检测对抗性输入,并在混合数据集上显示检测的性能,该数据集由不同攻击算法产生的对抗性示例组成,可用于以低成本与任何预训练的DNN相关联。 Wiener过滤器还作为DENOISE算法引入了防御模型,这可以进一步提高性能。实验结果表明,可以通过我们的特征图降级算法来实现检测对抗示例的良好精度。

Machine learning techniques are immensely deployed in both industry and academy. Recent studies indicate that machine learning models used for classification tasks are vulnerable to adversarial examples, which limits the usage of applications in the fields with high precision requirements. We propose a new approach called Feature Map Denoising to detect the adversarial inputs and show the performance of detection on the mixed dataset consisting of adversarial examples generated by different attack algorithms, which can be used to associate with any pre-trained DNNs at a low cost. Wiener filter is also introduced as the denoise algorithm to the defense model, which can further improve performance. Experimental results indicate that good accuracy of detecting the adversarial examples can be achieved through our Feature Map Denoising algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源