论文标题
脉冲半线性演化方程的可控性,并在希尔伯特空间中记忆和延迟
Controllability of Impulsive Semilinear Evolution Equations with Memory and Delay in Hilbert Spaces
论文作者
论文摘要
在我们对半联赛的可控性的启发下,记忆\ cite {carrasco-guevara-leiva:2017aa,guevara-leiva:2016aa,guevara-leiva:2017aa},我们呈现出与型模型的冲动半度性平等的一般性控制和延迟的延伸范围的一般案例。我们证明,对于最终状态的每个初始和任意社区,都可以通过延迟,将系统从初始条件转移到最终条件的该邻域,并通过延迟进行了可接受的控制。我们的证明基于半群理论和A.E. Bashirov等。 Technique \ Cite {Bashirov-Ghahramanlou:2015aa,Bashirov-Jneid:2013aa,Bashirov-Mahmudov:2007aa},避免了固定点定理。
Inspired in our work on the controllability for the semilinear with memory \cite{Carrasco-Guevara-Leiva:2017aa, Guevara-Leiva:2016aa, Guevara-Leiva:2017aa}, we present the general cases for the approximate controllability of impulsive semilinear evolution equations in a Hilbert space with memory and delay terms which arise from reaction-diffusion models. We prove that, for each initial and an arbitrary neighborhood of a final state, one can steer the system from the initial condition to this neighborhood of the final condition with an appropriated collection of admissible controls thanks to the delays. Our proof is based on semigroup theory and A.E. Bashirov et al. technique \cite{Bashirov-Ghahramanlou:2015aa, Bashirov-Jneid:2013aa, Bashirov-Mahmudov:2007aa} which avoids fixed point theorems.