论文标题
连续指标归一化流量的变化推断
Variational Inference with Continuously-Indexed Normalizing Flows
论文作者
论文摘要
连续指标的流(CIF)最近在各种密度估计任务上实现了基线正常化流量的改进。 CIF不具有封闭形式的边缘密度,因此,与标准流不同,不能直接插入变异推理(VI)方案中,以产生更具表现力的后代家族。但是,我们在这里展示了如何将CIF用作辅助VI方案的一部分,以自然方式以自然方式制定和训练表达后近似值。我们利用多层CIF的条件独立性结构来构建所需的辅助推理模型,我们在经验上显示了模型证据的低相差估计值。然后,当利益的后验分布具有复杂的拓扑结构时,我们证明了CIF在VI问题中的优势,而在贝叶斯推理和替代最大似然设置中都获得了改善的结果。
Continuously-indexed flows (CIFs) have recently achieved improvements over baseline normalizing flows on a variety of density estimation tasks. CIFs do not possess a closed-form marginal density, and so, unlike standard flows, cannot be plugged in directly to a variational inference (VI) scheme in order to produce a more expressive family of approximate posteriors. However, we show here how CIFs can be used as part of an auxiliary VI scheme to formulate and train expressive posterior approximations in a natural way. We exploit the conditional independence structure of multi-layer CIFs to build the required auxiliary inference models, which we show empirically yield low-variance estimators of the model evidence. We then demonstrate the advantages of CIFs over baseline flows in VI problems when the posterior distribution of interest possesses a complicated topology, obtaining improved results in both the Bayesian inference and surrogate maximum likelihood settings.