论文标题
$ n $ - 参考转移学习显着性预测
$n$-Reference Transfer Learning for Saliency Prediction
论文作者
论文摘要
从深度学习研究和大规模数据集中受益,显着性预测在过去十年中取得了巨大的成功。但是,预测缺乏渴望数据模型数据的新域中图像的显着图仍然具有挑战性。为了解决这个问题,我们提出了一些用于显着性预测的传输转移学习范式,这使知识从现有的大规模显着数据集中学到的知识转移到具有有限标记示例的目标域。具体而言,很少有目标域示例用作使用源域数据集训练模型的参考,以便训练过程可以收敛到局部最小值,以支持目标域。然后,通过参考,学习的模型将进一步微调。所提出的框架是基于梯度和模型不可静力的。我们对各种源域和目标域对进行了全面的实验和消融研究。结果表明,所提出的框架可以取得重大的性能提高。该代码可在\ url {https://github.com/luoyan407/n-reference}上公开获得。
Benefiting from deep learning research and large-scale datasets, saliency prediction has achieved significant success in the past decade. However, it still remains challenging to predict saliency maps on images in new domains that lack sufficient data for data-hungry models. To solve this problem, we propose a few-shot transfer learning paradigm for saliency prediction, which enables efficient transfer of knowledge learned from the existing large-scale saliency datasets to a target domain with limited labeled examples. Specifically, very few target domain examples are used as the reference to train a model with a source domain dataset such that the training process can converge to a local minimum in favor of the target domain. Then, the learned model is further fine-tuned with the reference. The proposed framework is gradient-based and model-agnostic. We conduct comprehensive experiments and ablation study on various source domain and target domain pairs. The results show that the proposed framework achieves a significant performance improvement. The code is publicly available at \url{https://github.com/luoyan407/n-reference}.