论文标题

中子恒星超长电磁场的粒子加速度

Particle acceleration in neutron star ultra-strong electromagnetic fields

论文作者

Tomczak, Ivan, Pétri, Jérôme

论文摘要

在本文中,我们讨论了在旋转中子恒星周围遇到的新粒子推动器中新粒子推动器的结果。在简单字段中介绍了该算法的结果并将其与预期的精确分析溶液进行比较之后,我们通过使用Deutsch溶液为毫秒脉冲液中的真空中旋转磁偶极子提供了新的模拟。颗粒被注入磁层内,忽略了辐射反应,它们之间的相互作用以及它们对田间的反馈。因此,我们的仿真尚未完全自洽,因为麦克斯韦方程未根据这些粒子产生的电流解决。该代码强调了相反电荷与质量比$ q/m $相对于北半球的对称行为。加速粒子的相对论洛伦兹因子与该比率$ q/m $成正比:质子达到$γ_p\ simeq 10^{10.7} $,而电子最多可达到$γ_e\ simeq 10^{14} $。 我们的模拟表明,颗粒可以被中子恒星捕获,被困在其周围,或者远离其远离光缸的弹出。实际上,对于给定的质量比,粒子遵循相似的轨迹。这些粒子轨道显示出一些耗尽的方向,尤其是在高磁性倾斜方面相对于正电荷的旋转轴,并且由于对称性而导致负电荷的低倾斜度。其他方向是优选的,并带有高密度的颗粒,某些方向集中了最高或最低的加速度效率。

In this paper, we discuss the results of a new particle pusher in realistic ultra-strong electromagnetic fields as those encountered around rotating neutron stars. After presenting results of this algorithm in simple fields and comparing them to expected exact analytical solutions, we present new simulations for a rotating magnetic dipole in vacuum for a millisecond pulsar by using Deutsch solution. Particles are injected within the magnetosphere, neglecting radiation reaction, interaction among them and their feedback on the fields. Our simulations are therefore not yet fully self-consistent because Maxwell equations are not solved according to the current produced by these particles. The code highlights the symmetrical behaviour of particles of opposite charge to mass ratio $q/m$ with respect to the north and south hemispheres. The relativistic Lorentz factor of the accelerated particles is proportional to this ratio $q/m$: protons reach up to $γ_p \simeq 10^{10.7}$, whereas electrons reach up to $γ_e \simeq 10^{14}$. Our simulations show that particles could be either captured by the neutron star, trapped around it, or ejected far from it, well outside the light-cylinder. Actually, for a given charge to mass ratio, particles follow similar trajectories. These particle orbits show some depleted directions, especially at high magnetic inclination with respect to the rotation axis for positive charges and at low inclination for negative charges because of symmetry. Other directions are preferred and loaded with a high density of particles, some directions concentrating the highest or lowest acceleration efficiencies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源