论文标题
通过潜在正规化对抗网络检测脑肿瘤异常
Brain Tumor Anomaly Detection via Latent Regularized Adversarial Network
论文作者
论文摘要
随着医学成像技术的发展,医学图像已成为医生诊断患者的重要基础。收集到的数据中的大脑结构很复杂,因此,在诊断脑异常时,需要医生花费大量能量。针对脑肿瘤数据的不平衡和标记的数据量很少,我们提出了一种创新的脑肿瘤异常检测算法。提出了半监督的异常检测模型,其中仅训练健康(正常)脑图像。模型在训练过程中捕获正常图像的常见模式,并根据潜在空间的重建误差检测异常。此外,该方法首先使用奇异值来限制潜在空间,并通过多个损耗函数共同优化图像空间,这使得正常样本和异常样本在特征级别中更可分开。本文利用Brats,HCP,MNIST和CIFAR-10数据集对有效性和实用性进行了全面评估。关于内部和跨数据库测试的广泛实验证明,我们的半监视方法的表现优于最先进的监督技术。
With the development of medical imaging technology, medical images have become an important basis for doctors to diagnose patients. The brain structure in the collected data is complicated, thence, doctors are required to spend plentiful energy when diagnosing brain abnormalities. Aiming at the imbalance of brain tumor data and the rare amount of labeled data, we propose an innovative brain tumor abnormality detection algorithm. The semi-supervised anomaly detection model is proposed in which only healthy (normal) brain images are trained. Model capture the common pattern of the normal images in the training process and detect anomalies based on the reconstruction error of latent space. Furthermore, the method first uses singular value to constrain the latent space and jointly optimizes the image space through multiple loss functions, which make normal samples and abnormal samples more separable in the feature-level. This paper utilizes BraTS, HCP, MNIST, and CIFAR-10 datasets to comprehensively evaluate the effectiveness and practicability. Extensive experiments on intra- and cross-dataset tests prove that our semi-supervised method achieves outperforms or comparable results to state-of-the-art supervised techniques.