论文标题

有效检测对抗图像

Efficient detection of adversarial images

论文作者

Yadav, Darpan Kumar, Mundra, Kartik, Modpur, Rahul, Chattopadhyay, Arpan, Kar, Indra Narayan

论文摘要

在本文中,考虑了对自主和网络物理系统中基于深层神经网络(DNN)的欺骗攻击的检测。几项研究表明,DNN对恶意欺骗攻击的脆弱性。在这样的攻击中,图像的某些或所有像素值由外部攻击者修改,因此对人眼几乎看不见的变化,但对于基于DNN的分类器而言足够重要,可以将其错误分类。本文首先提出了一种新颖的预处理技术,该技术促进了在任何基于DNN的图像分类器以及攻击者模型下检测此类修改图像的检测。所提出的预处理算法涉及一定的主成分分析(PCA)基于图像的分解以及基于随机扰动的检测,以降低计算复杂性。接下来,提出了该算法的自适应版本,其中使用双重阈值策略自适应地选择了随机数量的扰动,并且通过随机近似值学习了阈值,以最大程度地减少预期的扰动数量,从而在错误的警报和遗漏的检测概率上受到约束。数值实验表明,所提出的检测方案的表现优于竞争算法,同时达到相当低的计算复杂性。

In this paper, detection of deception attack on deep neural network (DNN) based image classification in autonomous and cyber-physical systems is considered. Several studies have shown the vulnerability of DNN to malicious deception attacks. In such attacks, some or all pixel values of an image are modified by an external attacker, so that the change is almost invisible to the human eye but significant enough for a DNN-based classifier to misclassify it. This paper first proposes a novel pre-processing technique that facilitates the detection of such modified images under any DNN-based image classifier as well as the attacker model. The proposed pre-processing algorithm involves a certain combination of principal component analysis (PCA)-based decomposition of the image, and random perturbation based detection to reduce computational complexity. Next, an adaptive version of this algorithm is proposed where a random number of perturbations are chosen adaptively using a doubly-threshold policy, and the threshold values are learnt via stochastic approximation in order to minimize the expected number of perturbations subject to constraints on the false alarm and missed detection probabilities. Numerical experiments show that the proposed detection scheme outperforms a competing algorithm while achieving reasonably low computational complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源