论文标题
主动相互作用的时空调制运动的现象学模型
Phenomenological model of motility by spatiotemporal modulation of active interactions
论文作者
论文摘要
在微观系统和各种技术(包括微流体)中,微观系统的运输量表至关重要。最近的实验实现了微管活动物中的自组织运输现象,利用光在时间和空间中调节运动蛋白活性。在这里,我们介绍了一种新颖的现象学模型来解释这种实验。我们的模型基于空间调制的粒子相互作用,揭示了在光控制的活动物质中,包括运动性和收缩在内的活性物质中新兴转运现象的可能机制。特别是,该模型的分析处理阐明了活化颗粒质量中心的保存,这是物质运输的基本机制,并证明了记忆的必要性。此外,我们将模型推广以解释其他现象,例如由更复杂的激活几何形状引起的微管星号 - 掌握相互作用。我们的结果表明,该模型为对光控制的活动物质的现象学理解提供了可能的基础,它将能够为主动物质设备的运输协议设计和优化。
Transport at microscopic length scales is essential in biological systems and various technologies, including microfluidics. Recent experiments achieved self-organized transport phenomena in microtubule active matter using light to modulate motor-protein activity in time and space. Here, we introduce a novel phenomenological model to explain such experiments. Our model, based on spatially modulated particle interactions, reveals a possible mechanism for emergent transport phenomena in light-controlled active matter, including motility and contraction. In particular, the model's analytic treatment elucidates the conservation of the center of mass of activated particles as a fundamental mechanism of material transport and demonstrates the necessity of memory for sustained motility. Furthermore, we generalize the model to explain other phenomena, like microtubule aster-aster interactions induced by more complicated activation geometries. Our results demonstrate that the model provides a possible foundation for the phenomenological understanding of light-controlled active matter, and it will enable the design and optimization of transport protocols for active matter devices.